加上这句代码:
print torch.cuda.is_available()
判断完毕!说说在pytorch中如何查看gpu信息吧~
为什么将数据转移至GPU的方法叫做.cuda而不是.gpu,就像将数据转移至CPU调用的方法是.cpu?这是因为GPU的编程接口采用CUDA,而目前并不是所有的GPU都支持CUDA,只有部分Nvidia的GPU才支持。
PyTorch未来可能会支持AMD的GPU,而AMD GPU的编程接口采用OpenCL,因此PyTorch还预留着.cl方法,用于以后支持AMD等的GPU。
torch.cuda.is_available()
cuda是否可用;
torch.cuda.device_count()
返回gpu数量;
torch.cuda.get_device_name(0)
返回gpu名字,设备索引默认从0开始;
torch.cuda.current_device()
返回当前设备索引;
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
您可能感兴趣的文章:- PyTorch-GPU加速实例
- Pytorch 搭建分类回归神经网络并用GPU进行加速的例子
- pytorch 两个GPU同时训练的解决方案
- 解决pytorch-gpu 安装失败的记录
- Pytorch 如何查看、释放已关闭程序占用的GPU资源
- Linux环境下GPU版本的pytorch安装