• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Opencv Python实现两幅图像匹配

    本文实例为大家分享了Opencv Python实现两幅图像匹配的具体代码,供大家参考,具体内容如下

    原图

    import cv2
    
    img1 = cv2.imread('SURF_2.jpg', cv2.IMREAD_GRAYSCALE)
    img1 = cv2.resize(img1,dsize=(600,400))
    img2 = cv2.imread('SURF_1.jpg', cv2.IMREAD_GRAYSCALE)
    img2 = cv2.resize(img2,dsize=(600,400))
    image1 = img1.copy()
    image2 = img2.copy()
    
    
    #创建一个SURF对象
    surf = cv2.xfeatures2d.SURF_create(25000)
    #SIFT对象会使用Hessian算法检测关键点,并且对每个关键点周围的区域计算特征向量。该函数返回关键点的信息和描述符
    keypoints1,descriptor1 = surf.detectAndCompute(image1,None)
    keypoints2,descriptor2 = surf.detectAndCompute(image2,None)
    # print('descriptor1:',descriptor1.shape(),'descriptor2',descriptor2.shape())
    #在图像上绘制关键点
    image1 = cv2.drawKeypoints(image=image1,keypoints = keypoints1,outImage=image1,color=(255,0,255),flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    image2 = cv2.drawKeypoints(image=image2,keypoints = keypoints2,outImage=image2,color=(255,0,255),flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    #显示图像
    cv2.imshow('surf_keypoints1',image1)
    cv2.imshow('surf_keypoints2',image2)
    cv2.waitKey(20)
    
    
    matcher = cv2.FlannBasedMatcher()
    matchePoints = matcher.match(descriptor1,descriptor2)
    # print(type(matchePoints),len(matchePoints),matchePoints[0])
    
    #提取强匹配特征点
    minMatch = 1
    maxMatch = 0
    for i in range(len(matchePoints)):
        if minMatch > matchePoints[i].distance:
            minMatch = matchePoints[i].distance
        if maxMatch  matchePoints[i].distance:
            maxMatch = matchePoints[i].distance
        print('最佳匹配值是:',minMatch)
        print('最差匹配值是:',maxMatch)
    
    #获取排雷在前边的几个最优匹配结果
    goodMatchePoints = []
    for i in range(len(matchePoints)):
        if matchePoints[i].distance  minMatch + (maxMatch-minMatch)/16:
            goodMatchePoints.append(matchePoints[i])
    
    #绘制最优匹配点
    outImg = None
    outImg = cv2.drawMatches(img1,keypoints1,img2,keypoints2,goodMatchePoints,outImg,
                             matchColor=(0,255,0),flags=cv2.DRAW_MATCHES_FLAGS_DEFAULT)
    cv2.imshow('matche',outImg)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    原图

    #coding=utf-8
    import cv2
    from matplotlib import pyplot as plt
    
    img=cv2.imread('xfeatures2d.SURF_create2.jpg',0)
    # surf=cv2.SURF(400)   #Hessian阈值400
    # kp,des=surf.detectAndCompute(img,None)
    # leng=len(kp)
    # print(leng)
    # 关键点太多,重取阈值
    
    surf=cv2.cv2.xfeatures2d.SURF_create(50000)   #Hessian阈值50000
    kp,des=surf.detectAndCompute(img,None)
    leng=len(kp)
    print(leng)
    
    img2=cv2.drawKeypoints(img,kp,None,(255,0,0),4)
    plt.imshow(img2)
    plt.show()
    
    # 下面是U-SURF算法,关键点朝向一致,运算速度加快。
    surf.upright=True
    kp=surf.detect(img,None)
    img3=cv2.drawKeypoints(img,kp,None,(255,0,0),4)
    
    plt.imshow(img3)
    plt.show()
    
    #检测关键点描述符大小,改64维成128维
    surf.extended=True
    kp,des=surf.detectAndCompute(img,None)
    dem1=surf.descriptorSize()
    print(dem1)
    shp1=des.shape()
    print(shp1)

    效果图

    import cv2
    from matplotlib import pyplot as plt
    
    leftImage = cv2.imread('xfeatures2d.SURF_create_1.jpg')
    rightImage = cv2.imread('xfeatures2d.SURF_create_2.jpg')
    
    # 创造sift
    sift = cv2.xfeatures2d.SIFT_create()
    kp1, des1 = sift.detectAndCompute(leftImage, None)
    kp2, des2 = sift.detectAndCompute(rightImage, None)  # 返回关键点信息和描述符
    
    FLANN_INDEX_KDTREE = 0
    indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    searchParams = dict(checks=50)  # 指定索引树要被遍历的次数
    
    flann = cv2.FlannBasedMatcher(indexParams, searchParams)
    matches = flann.knnMatch(des1, des2, k=2)
    matchesMask = [[0, 0] for i in range(len(matches))]
    print("matches", matches[0])
    for i, (m, n) in enumerate(matches):
        if m.distance  0.07 * n.distance:
            matchesMask[i] = [1, 0]
    
    drawParams = dict(matchColor=(0, 255, 0), singlePointColor=None,
                      matchesMask=matchesMask, flags=2)  # flag=2只画出匹配点,flag=0把所有的点都画出
    resultImage = cv2.drawMatchesKnn(leftImage, kp1, rightImage, kp2, matches, None, **drawParams)
    plt.imshow(resultImage)
    plt.show()

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • opencv-python图像配准(匹配和叠加)的实现
    • Python使用Opencv实现图像特征检测与匹配的方法
    • Python和OpenCV进行多尺度模板匹配实现
    • OpenCV-Python模板匹配人眼的实例
    • OpenCV-Python实现多模板匹配
    • python基于OpenCV模板匹配识别图片中的数字
    • Python开发之基于模板匹配的信用卡数字识别功能
    • Python+Opencv实现图像匹配功能(模板匹配)
    上一篇:Django drf分页器的使用详解
    下一篇:Python3 解释器的实现
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Opencv Python实现两幅图像匹配 Opencv,Python,实现,两幅,图像,