• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    python OpenCV实现答题卡识别判卷

    本文实例为大家分享了python OpenCV实现答题卡识别判卷的具体代码,供大家参考,具体内容如下

    完整代码:

    #导入工具包
    import numpy as np
    import argparse
    import imutils
    import cv2
     
    # 设置参数
    ap = argparse.ArgumentParser()
    ap.add_argument("-i", "--image", default="./images/test_03.png",
     help="path to the input image")
    args = vars(ap.parse_args())
     
    # 正确答案
    ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
     
    def order_points(pts):
     # 一共4个坐标点
     rect = np.zeros((4, 2), dtype = "float32")
     
     # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
     # 计算左上,右下
     s = pts.sum(axis = 1)
     rect[0] = pts[np.argmin(s)]
     rect[2] = pts[np.argmax(s)]
     
     # 计算右上和左下
     diff = np.diff(pts, axis = 1)
     rect[1] = pts[np.argmin(diff)]
     rect[3] = pts[np.argmax(diff)]
     
     return rect
     
    def four_point_transform(image, pts):
     # 获取输入坐标点
     rect = order_points(pts)
     (tl, tr, br, bl) = rect
     
     # 计算输入的w和h值
     widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
     widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
     maxWidth = max(int(widthA), int(widthB))
     
     heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
     heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
     maxHeight = max(int(heightA), int(heightB))
     
     # 变换后对应坐标位置
     dst = np.array([
      [0, 0],
      [maxWidth - 1, 0],
      [maxWidth - 1, maxHeight - 1],
      [0, maxHeight - 1]], dtype = "float32")
     
     # 计算变换矩阵
     M = cv2.getPerspectiveTransform(rect, dst)
     warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
     
     # 返回变换后结果
     return warped
    def sort_contours(cnts, method="left-to-right"):
        reverse = False
        i = 0
        if method == "right-to-left" or method == "bottom-to-top":
            reverse = True
        if method == "top-to-bottom" or method == "bottom-to-top":
            i = 1
        boundingBoxes = [cv2.boundingRect(c) for c in cnts]
        (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                            key=lambda b: b[1][i], reverse=reverse))
        return cnts, boundingBoxes
    def cv_show(name,img):
            cv2.imshow(name, img)
            cv2.waitKey(0)
            cv2.destroyAllWindows()  
     
    # 预处理
    image = cv2.imread(args["image"])
    contours_img = image.copy()
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    cv_show('blurred',blurred)
    edged = cv2.Canny(blurred, 75, 200)
    cv_show('edged',edged)
     
    # 轮廓检测
    cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
     cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) 
    cv_show('contours_img',contours_img)
    docCnt = None
     
    # 确保检测到了
    if len(cnts) > 0:
     # 根据轮廓大小进行排序
     cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
     
     # 遍历每一个轮廓
     for c in cnts:
      # 近似
      peri = cv2.arcLength(c, True)
      approx = cv2.approxPolyDP(c, 0.02 * peri, True)
     
      # 准备做透视变换
      if len(approx) == 4:
       docCnt = approx
       break
     
    # 执行透视变换
     
    warped = four_point_transform(gray, docCnt.reshape(4, 2))
    cv_show('warped',warped)
    # Otsu's 阈值处理
    thresh = cv2.threshold(warped, 0, 255,
     cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] 
    cv_show('thresh',thresh)
    thresh_Contours = thresh.copy()
    # 找到每一个圆圈轮廓
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
     cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) 
    cv_show('thresh_Contours',thresh_Contours)
    questionCnts = []
     
    # 遍历
    for c in cnts:
     # 计算比例和大小
     (x, y, w, h) = cv2.boundingRect(c)
     ar = w / float(h)
     
     # 根据实际情况指定标准
     if w >= 20 and h >= 20 and ar >= 0.9 and ar = 1.1:
      questionCnts.append(c)
     
    # 按照从上到下进行排序
    questionCnts = sort_contours(questionCnts,
     method="top-to-bottom")[0]
    correct = 0
     
    # 每排有5个选项
    for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
     # 排序
     cnts = sort_contours(questionCnts[i:i + 5])[0]
     bubbled = None
     
     # 遍历每一个结果
     for (j, c) in enumerate(cnts):
      # 使用mask来判断结果
      mask = np.zeros(thresh.shape, dtype="uint8")
      cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
      cv_show('mask',mask)
      # 通过计算非零点数量来算是否选择这个答案
      mask = cv2.bitwise_and(thresh, thresh, mask=mask)
      total = cv2.countNonZero(mask)
     
      # 通过阈值判断
      if bubbled is None or total > bubbled[0]:
       bubbled = (total, j)
     
     # 对比正确答案
     color = (0, 0, 255)
     k = ANSWER_KEY[q]
     
     # 判断正确
     if k == bubbled[1]:
      color = (0, 255, 0)
      correct += 1
     
     # 绘图
     cv2.drawContours(warped, [cnts[k]], -1, color, 3)
     
     
    score = (correct / 5.0) * 100
    print("[INFO] score: {:.2f}%".format(score))
    cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
     cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
    cv2.imshow("Original", image)
    cv2.imshow("Exam", warped)
    cv2.waitKey(0)

    test_03.png

    运行效果:

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • python实现百万答题自动百度搜索答案
    • python实现用户答题功能
    • 答题辅助python代码实现
    • python3.5+tesseract+adb实现西瓜视频或头脑王者辅助答题
    • 从0到1使用python开发一个半自动答题小程序的实现
    • Python冲顶大会 快来答题!
    • Python答题卡识别并给出分数的实现代码
    • python利用opencv如何实现答题卡自动判卷
    上一篇:详解Python GUI工具取色器
    下一篇:python学生信息管理系统实现代码
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    python OpenCV实现答题卡识别判卷 python,OpenCV,实现,答题,卡,