• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    手把手教你使用TensorFlow2实现RNN

    概述

    RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.

    权重共享

    传统神经网络:


    RNN:


    RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

    计算过程:


    计算状态 (State)

    计算输出:

    案例

    数据集

    IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

    RNN 层

    class RNN(tf.keras.Model):
    
        def __init__(self, units):
            super(RNN, self).__init__()
    
            # 初始化 [b, 64] (b 表示 batch_size)
            self.state0 = [tf.zeros([batch_size, units])]
            self.state1 = [tf.zeros([batch_size, units])]
    
            # [b, 80] => [b, 80, 100]
            self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)
    
            self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
            self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
    
            # [b, 80, 100] => [b, 64] => [b, 1]
            self.out_layer = tf.keras.layers.Dense(1)
    
        def call(self, inputs, training=None):
            """
    
            :param inputs: [b, 80]
            :param training:
            :return:
            """
    
            state0 = self.state0
            state1 = self.state1
    
            x = self.embedding(inputs)
    
            for word in tf.unstack(x, axis=1):
                out0, state0 = self.rnn_cell0(word, state0, training=training)
                out1, state1 = self.rnn_cell1(out0, state1, training=training)
    
            # [b, 64] -> [b, 1]
            x = self.out_layer(out1)
    
            prob = tf.sigmoid(x)
    
            return prob
    

    获取数据

    def get_data():
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)
    
        # 更改句子长度
        X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
        X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)
    
        # 调试输出
        print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
        print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
        train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
        test_db = test_db.batch(batch_size, drop_remainder=True)
    
        return train_db, test_db
    

    完整代码

    import tensorflow as tf
    
    
    class RNN(tf.keras.Model):
    
        def __init__(self, units):
            super(RNN, self).__init__()
    
            # 初始化 [b, 64]
            self.state0 = [tf.zeros([batch_size, units])]
            self.state1 = [tf.zeros([batch_size, units])]
    
            # [b, 80] => [b, 80, 100]
            self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)
    
            self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
            self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
    
            # [b, 80, 100] => [b, 64] => [b, 1]
            self.out_layer = tf.keras.layers.Dense(1)
    
        def call(self, inputs, training=None):
            """
    
            :param inputs: [b, 80]
            :param training:
            :return:
            """
    
            state0 = self.state0
            state1 = self.state1
    
            x = self.embedding(inputs)
    
            for word in tf.unstack(x, axis=1):
                out0, state0 = self.rnn_cell0(word, state0, training=training)
                out1, state1 = self.rnn_cell1(out0, state1, training=training)
    
            # [b, 64] -> [b, 1]
            x = self.out_layer(out1)
    
            prob = tf.sigmoid(x)
    
            return prob
    
    
    # 超参数
    total_words = 10000  # 文字数量
    max_review_len = 80  # 句子长度
    embedding_len = 100  # 词维度
    batch_size = 1024  # 一次训练的样本数目
    learning_rate = 0.0001  # 学习率
    iteration_num = 20  # 迭代次数
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
    loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 损失
    model = RNN(64)
    
    # 调试输出summary
    model.build(input_shape=[None, 64])
    print(model.summary())
    
    # 组合
    model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
    
    
    def get_data():
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)
    
        # 更改句子长度
        X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
        X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)
    
        # 调试输出
        print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
        print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
        train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
        test_db = test_db.batch(batch_size, drop_remainder=True)
    
        return train_db, test_db
    
    
    if __name__ == "__main__":
        # 获取分割的数据集
        train_db, test_db = get_data()
    
        # 拟合
        model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)
    

    输出结果:

    Model: "rnn"
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    embedding (Embedding) multiple 1000000
    _________________________________________________________________
    simple_rnn_cell (SimpleRNNCe multiple 10560
    _________________________________________________________________
    simple_rnn_cell_1 (SimpleRNN multiple 8256
    _________________________________________________________________
    dense (Dense) multiple 65
    =================================================================
    Total params: 1,018,881
    Trainable params: 1,018,881
    Non-trainable params: 0
    _________________________________________________________________
    None

    (25000, 80) (25000,)
    (25000, 80) (25000,)
    Epoch 1/20
    2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
    24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
    Epoch 2/20
    24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
    Epoch 3/20
    24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
    Epoch 4/20
    24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
    Epoch 5/20
    24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
    Epoch 6/20
    24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
    Epoch 7/20
    24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
    Epoch 8/20
    24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
    Epoch 9/20
    24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
    Epoch 10/20
    24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
    Epoch 11/20
    24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
    Epoch 12/20
    24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
    Epoch 13/20
    24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
    Epoch 14/20
    24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
    Epoch 15/20
    24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
    Epoch 16/20
    24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
    Epoch 17/20
    24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
    Epoch 18/20
    24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
    Epoch 19/20
    24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
    Epoch 20/20
    24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959

    Process finished with exit code 0

    到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • tensorflow2.0实现复杂神经网络(多输入多输出nn,Resnet)
    • windows系统Tensorflow2.x简单安装记录(图文)
    • TensorFlow2基本操作之合并分割与统计
    • 详解TensorFlow2实现前向传播
    • Python强化练习之Tensorflow2 opp算法实现月球登陆器
    上一篇:Python机器学习之决策树和随机森林
    下一篇:Python实现排序方法常见的四种
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    手把手教你使用TensorFlow2实现RNN 手把手,教你,使用,TensorFlow2,