• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python实现Opencv cv2.Canny()边缘检测

    这篇博客将介绍Canny边缘检测的概念,并利用cv2.Canny()实现边缘检测;

    选择滞后阈值minVal和maxVal是得到正确结果的关键。

    1. 效果图

    原始图 VS Canny检测效果图如下:

    2. 源码

    # Canny边缘检测是一种流行的边缘检测算法。它是由约翰F开发的,是一个多阶段的算法;
    # Canny边缘检测大致包含4个步骤:
    # 
    # 1.降噪(使用高斯滤波去除高频噪声);
    # 2. 计算边缘梯度和方向(SobelX、SobleY核在水平方向和垂直方向对平滑后的图像进行滤波,找到每个像素的边缘梯度和方向);
    # 3. 非最大抑制(在得到梯度大小和方向后,对图像进行全扫描,去除任何不需要的像素,这些像素可能不构成边缘。检查像素是否在其梯度方向的邻域中是局部最大值。否则,将被抑制(归零)。简而言之,得到的结果是一个具有“细边”的二值图像。
    # 4. 滞后阈值(决定哪些边是真正的边,哪些不是。为此需要两个阈值minVal和maxVal,任何强度梯度大于maxVal的边都肯定是边,小于minVal的边肯定是非边,因此丢弃。位于这两个阈值之间的边根据其连通性被分类为边或非边。如果它们连接到“确定边缘”像素,则它们被视为边缘的一部分。否则,它们也会被丢弃。)
    # 
    # 选择滞后阈值minVal和maxVal是得到正确结果的关键。
    import cv2
    from matplotlib import pyplot as plt
    
    img = cv2.imread('zly.jpg', 0)
    edges = cv2.Canny(img, 80, 200)
    
    plt.subplot(121), plt.imshow(img, cmap='gray')
    plt.title('Original Image'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(edges, cmap='gray')
    plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
    
    plt.show()
    

    参考 https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_canny/py_canny.html#canny

    补充:OpenCV-Python 中 Canny() 参数

    步骤:

    """
    cv2.Canny(image,            # 输入原图(必须为单通道图)
              threshold1, 
              threshold2,       # 较大的阈值2用于检测图像中明显的边缘
              [, edges[, 
              apertureSize[,    # apertureSize:Sobel算子的大小
              L2gradient ]]])   # 参数(布尔值):
                                  true: 使用更精确的L2范数进行计算(即两个方向的倒数的平方和再开放),
                                  false:使用L1范数(直接将两个方向导数的绝对值相加)。
    """
    
    import cv2
    import numpy as np  
     
    original_img = cv2.imread("qingwen.png", 0)
    
    # canny(): 边缘检测
    img1 = cv2.GaussianBlur(original_img,(3,3),0)
    canny = cv2.Canny(img1, 50, 150)
    
    # 形态学:边缘检测
    _,Thr_img = cv2.threshold(original_img,210,255,cv2.THRESH_BINARY)#设定红色通道阈值210(阈值影响梯度运算效果)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))         #定义矩形结构元素
    gradient = cv2.morphologyEx(Thr_img, cv2.MORPH_GRADIENT, kernel) #梯度
    
    cv2.imshow("original_img", original_img) 
    cv2.imshow("gradient", gradient) 
    cv2.imshow('Canny', canny)
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    

     

    可调整阈值大小的程序

    import cv2
    import numpy as np
     
    def CannyThreshold(lowThreshold):
        detected_edges = cv2.GaussianBlur(gray,(3,3),0)
        detected_edges = cv2.Canny(detected_edges,
                                   lowThreshold,
                                   lowThreshold*ratio,
                                   apertureSize = kernel_size)
        dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.
        cv2.imshow('canny demo',dst)
    
    lowThreshold = 0
    max_lowThreshold = 100
    ratio = 3
    kernel_size = 3
     
    img = cv2.imread('qingwen.png')
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
     
    cv2.namedWindow('canny demo')
     
    cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)
     
    CannyThreshold(0)  # initialization
    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

     

    到此这篇关于Python实现Opencv cv2.Canny()边缘检测的文章就介绍到这了,更多相关Opencv cv2.Canny()边缘检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • Python OpenCV实现边缘检测
    • OpenCV中Canny边缘检测的实现
    • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测
    • OpenCV实现灰度、高斯模糊、边缘检测的示例
    • Python使用Opencv实现边缘检测以及轮廓检测的实现
    • 如何利用Python 进行边缘检测
    • python实现canny边缘检测
    • OpenCV半小时掌握基本操作之边缘检测
    上一篇:利用Python+PyQt5实现简易浏览器的实战记录
    下一篇:OpenCV中Canny边缘检测的实现
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python实现Opencv cv2.Canny()边缘检测 Python,实现,Opencv,cv2.Canny,