• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    图文详解OpenCV中光流以及视频特征点追踪

    前言

    这篇博客将介绍光流的概念以及如何使用 Lucas-Kanade 方法估计光流,并演示如何使用 cv2.calcOpticalFlowPyrLK() 来跟踪视频中的特征点。

    1. 效果图

    光流追踪效果图如下:

    它显示了一个球在连续 5 帧中移动。箭头表示其位移矢量。

    不是很严谨的——稀疏光流特征点追踪效果图如下:

    它追踪了视频中多个车的主驾驶、副驾驶,以及行人的边缘角点的轨迹:

    此代码不检查下一个关键点的正确程度。因此即使图像中的任何特征点消失,光流也有可能找到下一个看起来可能靠近它的点。对于稳健的跟踪,角点应该在特定的时间间隔内检测点。

    过程图其一如下:

    优化版的——稀疏光流特征点追踪效果如下:

    找到特征点,每 30 帧对光流点向后检查,只保留还存在于屏幕中的特征点。不会存在如上图车已经过去了,还留存有长长的不正确的轨迹追踪线。

    过程图其一如下:

    原图 VS 密集光流追踪 gif 效果图如下:

    原图 VS 密集光流Hsv效果图其一如下:

    2. 原理

    2.1 什么是光流?光流追踪的前提、原理

    光流是由物体或相机的运动引起的图像物体在连续两帧之间的明显运动的模式。它是 2D 矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。

    光流追踪的前提是:1. 对象的像素强度在连续帧之间不会改变;2. 相邻像素具有相似的运动。

    光流追踪的原理:

    cv2.goodFeaturesToTrack() :Shi-Tomasi 角点检测器确定要追踪的特征点

    cv2.calcOpticalFlowPyrLK(): 追踪视频中的稀疏特征点

    cv2.calcOpticalFlowFarneback(): 追踪视频中的密集特征点

    取第一帧,检测其中的一些 Shi-Tomasi 角点,使用 Lucas-Kanade 光流迭代跟踪这些点。对于函数 cv2.calcOpticalFlowPyrLK() 传递前一帧、前一个点和下一帧。它返回下一个点以及一些状态编号,如果找到下一个点,则值为 1,否则为零。然后在下一步中迭代地将这些下一个点作为前一个点传递。

    使用 Harris 角点检测器 检查逆矩阵的相似性。它表示角点是更好的跟踪点。

    Shi-Tomasi 角点检测器 比 Harris 角点检测器效果更好一些;

    2.2 光流的应用

    光流在以下领域有许多应用:

    2.3 光流的2种方法

    OpenCV提供了俩种算法计算光流,分别通过:cv2.calcOpticalFlowPyrLK()、cv2.calcOpticalFlowFarneback实现;

    稀疏光流计算:

    该方法传递前一帧、前一个点和下一帧;
    它返回下一个点以及一些状态编号,如果找到下一个点,则值为 1,否则为零。

    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

    - old_gray: 上一帧单通道灰度图
    - frame_gray: 下一帧单通道灰度图
    - prePts:p0上一帧坐标pts
    - nextPts: None
    - winSize: 每个金字塔级别上搜索窗口的大小
    - maxLevel: 最大金字塔层数
    - criteria:指定迭代搜索算法的终止条件,在指定的最大迭代次数 10 之后或搜索窗口移动小于 0.03

    密集光流计算:

    该方法将得到一个带有光流向量 (u,v) 的 2 通道阵列。可以找到它们的大小和方向,然后对结果进行颜色编码以实现更好的可视化。
    在HSV图像中,方向对应于图像的色调,幅度对应于价值平面。

    flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)

    - prvs: 上一帧单通道灰度图
    - next: 下一帧单通道灰度图
    - flow: 流 None
    - pyr_scale: 0.5经典金字塔,构建金字塔缩放scale
    - level:3 初始图像的金字塔层数
    - winsize:3 平均窗口大小,数值越大,算法对图像的鲁棒性越强
    - iterations:15 迭代次数
    - poly_n:5 像素邻域的参数多边形大小,用于在每个像素中找到多项式展开式;较大的值意味着图像将使用更平滑的曲面进行近似,从而产生更高的分辨率、鲁棒算法和更模糊的运动场;通常多边形n=5或7。
    - poly_sigma:1.2 高斯标准差,用于平滑导数
    - flags: 可以是以下操作标志的组合:OPTFLOW_USE_INITIAL_FLOW:使用输入流作为初始流近似值。OPTFLOW_FARNEBACK_GAUSSIAN: 使用GAUSSIAN过滤器而不是相同尺寸的盒过滤器;

    3. 源码

    3.2 稀疏光流追踪

    # 光流追踪
    # 光流追踪的前提是:1. 对象的像素强度在连续帧之间不会改变;2. 相邻像素具有相似的运动。
    # - cv2.goodFeaturesToTrack() 确定要追踪的特征点
    # - cv2.calcOpticalFlowPyrLK() 追踪视频中的特征点
    
    # 取第一帧,检测其中的一些 Shi-Tomasi 角点,使用 Lucas-Kanade 光流迭代跟踪这些点。
    # 对于函数 cv2.calcOpticalFlowPyrLK() 传递前一帧、前一个点和下一帧。它返回下一个点以及一些状态编号,如果找到下一个点,则值为 1,否则为零。
    # 然后在下一步中迭代地将这些下一个点作为前一个点传递。
    
    # USAGE
    # python video_optical_flow.py
    
    import imutils
    import numpy as np
    import cv2
    
    cap = cv2.VideoCapture('images/slow_traffic_small.mp4')
    
    # ShiTomasi角点检测的参数
    feature_params = dict(maxCorners=100,
                          qualityLevel=0.3,
                          minDistance=7,
                          blockSize=7)
    
    # Lucas Kanada光流检测的参数
    lk_params = dict(winSize=(15, 15),
                     maxLevel=2,
                     criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
    
    # 构建随机颜色
    color = np.random.randint(0, 255, (100, 3))
    
    # 获取第一帧并发现角点
    ret, old_frame = cap.read()
    old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
    p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
    
    # 为绘制光流追踪图,构建一个Mask
    mask = np.zeros_like(old_frame)
    
    num = 0
    while (1):
        ret, frame = cap.read()
    
        if not ret:
            break
    
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    
        # 使用迭代Lucas Kanade方法计算稀疏特征集的光流
        # - old_gray: 上一帧单通道灰度图
        # - frame_gray: 下一帧单通道灰度图
        # - prePts:p0上一帧坐标pts
        # - nextPts: None
        # - winSize: 每个金字塔级别上搜索窗口的大小
        # - maxLevel: 最大金字塔层数
        # - criteria:指定迭代搜索算法的终止条件,在指定的最大迭代次数criteria.maxCount之后或搜索窗口移动小于criteria.epsilon
        p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
    
        # 选择轨迹点
        good_new = p1[st == 1]
        good_old = p0[st == 1]
    
        # 绘制轨迹
        for i, (new, old) in enumerate(zip(good_new, good_old)):
            a, b = new.ravel()
            c, d = old.ravel()
            mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
            frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
        img = cv2.add(frame, mask)
    
        cv2.imshow('frame', img)
        cv2.imwrite('videoof-imgs/' + str(num) + '.jpg', imutils.resize(img, 500))
        print(str(num))
        num = num + 1
        k = cv2.waitKey(30)  0xff
        if k == 27:
            break
    
        # 更新之前的帧和点
        old_gray = frame_gray.copy()
        p0 = good_new.reshape(-1, 1, 2)
    
    cv2.destroyAllWindows()
    cap.release()
    

    3.2 优化版稀疏光流追踪

    # 优化后的光流追踪—Lucas-Kanade tracker
    # (当不见检查下一个关键点的正确程度时,即使图像中的任何特征点消失,光流也有可能找到下一个看起来可能靠近它的点。实际上对于稳健的跟踪,角点应该在特定的时间间隔内检测点。
    # 找到特征点后,每 30 帧对光流点的向后检查,只选择好的。)
    # Lucas Kanade稀疏光流演示。使用GoodFeatures跟踪用于跟踪初始化和匹配验证的回溯帧之间。
    # Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames.
    
    # Usage
    # pyhton lk_track.py images/slow_traffic_small.mp4
    # 按 ESC键退出
    
    from __future__ import print_function
    
    import imutils
    import numpy as np
    import cv2
    
    
    def draw_str(dst, target, s):
        x, y = target
        cv2.putText(dst, s, (x + 1, y + 1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv2.LINE_AA)
        cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
    
    
    lk_params = dict(winSize=(15, 15),
                     maxLevel=2,
                     criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
    
    feature_params = dict(maxCorners=500,
                          qualityLevel=0.3,
                          minDistance=7,
                          blockSize=7)
    
    
    class App:
        def __init__(self, video_src):
            self.track_len = 10
            self.detect_interval = 30
            self.tracks = []
            self.cam = cv2.VideoCapture(video_src)
            self.frame_idx = 0
    
        def run(self):
            while True:
                _ret, frame = self.cam.read()
                if not _ret:
                    break
    
                frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                vis = frame.copy()
    
                if len(self.tracks) > 0:
                    img0, img1 = self.prev_gray, frame_gray
                    p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
                    p1, _st, _err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
                    p0r, _st, _err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
                    d = abs(p0 - p0r).reshape(-1, 2).max(-1)
                    good = d  1
                    new_tracks = []
                    for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
                        if not good_flag:
                            continue
                        tr.append((x, y))
                        if len(tr) > self.track_len:
                            del tr[0]
                        new_tracks.append(tr)
                        cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
                    self.tracks = new_tracks
                    cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
                    draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
    
                if self.frame_idx % self.detect_interval == 0:
                    mask = np.zeros_like(frame_gray)
                    mask[:] = 255
                    for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
                        cv2.circle(mask, (x, y), 5, 0, -1)
                    p = cv2.goodFeaturesToTrack(frame_gray, mask=mask, **feature_params)
                    if p is not None:
                        for x, y in np.float32(p).reshape(-1, 2):
                            self.tracks.append([(x, y)])
    
                self.prev_gray = frame_gray
                cv2.imshow('lk_track', vis)
                print(self.frame_idx)
                cv2.imwrite('videoOof-imgs/' + str(self.frame_idx) + '.jpg', imutils.resize(vis, 500))
                self.frame_idx += 1
    
                ch = cv2.waitKey(1)
                if ch == 27:
                    break
    
    def main():
        import sys
        try:
            video_src = sys.argv[1]
        except:
            video_src = 0
    
        App(video_src).run()
        print('Done')
    
    
    if __name__ == '__main__':
        print(__doc__)
        main()
        cv2.destroyAllWindows()
    

    3.3 密集光流追踪

    # OpenCV中的密集光流
    # Lucas-Kanade 方法计算稀疏特征集的光流(使用 Shi-Tomasi 算法检测到的角点)。
    # OpenCV 提供了另一种算法: Gunner Farneback 来寻找密集光流。它计算帧中所有点的光流。
    # 通过cv2.calcOpticalFlowFarneback() 将得到一个带有光流向量 (u,v) 的 2 通道阵列。可以找到它们的大小和方向,然后对结果进行颜色编码以实现更好的可视化。
    # 在HSV图像中,方向对应于图像的色调,幅度对应于价值平面。
    
    import cv2
    import imutils
    import numpy as np
    
    cap = cv2.VideoCapture('images/slow_traffic_small.mp4')
    
    ret, frame1 = cap.read()
    prvs = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
    hsv = np.zeros_like(frame1)
    hsv[..., 1] = 255
    
    num = 0
    while (1):
        ret, frame2 = cap.read()
    
        if not ret:
            break
        next = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
    
        # 使用迭代Gunner Farneback 方法计算密集特征的光流
        # - prvs: 上一帧单通道灰度图
        # - next: 下一帧单通道灰度图
        # - flow: 流 None
        # - pyr_scale: 0.5经典金字塔,构建金字塔缩放scale
        # - level:3 初始图像的金字塔层数
        # - winsize:3 平均窗口大小,数值越大,算法对图像的鲁棒性越强
        # - iterations:15 迭代次数
        # - poly_n:5 像素邻域的参数多边形大小,用于在每个像素中找到多项式展开式;较大的值意味着图像将使用更平滑的曲面进行近似,从而产生更高的分辨率、鲁棒算法和更模糊的运动场;通常多边形n=5或7。
        # - poly_sigma:1.2 高斯标准差,用于平滑导数
        # - flags: 可以是以下操作标志的组合:OPTFLOW_USE_INITIAL_FLOW:使用输入流作为初始流近似值。OPTFLOW_FARNEBACK_GAUSSIAN: 使用GAUSSIAN过滤器而不是相同尺寸的盒过滤器;
        flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    
        mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
        hsv[..., 0] = ang * 180 / np.pi / 2
        hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
        rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
        cv2.imshow('Origin VS frame2', np.hstack([frame2, rgb]))
        cv2.imwrite('dof-imgs/' + str(num) + '.jpg', imutils.resize(np.hstack([frame2, rgb]), 600))
        k = cv2.waitKey(30)  0xff
        num = num + 1
        if k == 27:
            break
        elif k == ord('s'):
            cv2.imwrite('dof-imgs/origin VS dense optical flow HSVres' + str(num) + ".jpg",
                        imutils.resize(np.hstack([frame2, rgb]), width=800))
        prvs = next
    
    cap.release()
    cv2.destroyAllWindows()
    

    参考 https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html#lucas-kanade

    总结

    到此这篇关于OpenCV中光流以及视频特征点追踪的文章就介绍到这了,更多相关OpenCV光流及视频特征点追踪内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • Opencv光流运动物体追踪详解
    • opencv3/C++实现光流点追踪
    • python+opencv实现动态物体追踪
    • 使用OpenCV实现检测和追踪车辆
    • 如何用OpenCV -python3实现视频物体追踪
    • opencv+arduino实现物体点追踪效果
    • Python+OpenCV实现实时眼动追踪的示例代码
    • OpenCV3.0+Python3.6实现特定颜色的物体追踪
    • 浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估
    • OpenCV 颜色追踪的示例代码
    上一篇:一文学会VSCode使用python
    下一篇:OpenCV特征提取与检测之Harris角点检测
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    图文详解OpenCV中光流以及视频特征点追踪 图文,详解,OpenCV,中,光流,