做互联网运营的数据分析,首先就是学会“分解”。将数据分解,将问题分解。所有的数据都可以层层向下分解,找出更多的“子数据”,通过对子数据的挖掘和优化,往往能逐个击破,找到方向,提升最后的“关键指标”。很多时候我们找不到努力的方向,往往是分解的能力还不够,只盯着最后大的成交额指标不放,不去挖掘这个指标下面的相关因素,而这些因素就是所谓的细节,做好了,就成为“极致”。
分解思路还有一个好处是可以帮助运营更好的分工,进行组织架构的优化调整。使员工更专业,更聚焦到某一块业务上,从而培养出一个细分职能的专家,当每个细分职能都有专家时,又会反应在运营细节的完美上。
运营的问题,是追踪出来的,不是一次就看出来的。所有的数据都是靠积累和沉淀才能发现问题,单一的数字没有任何意义,只能称为 “数值”。比如一个店铺今天的流量是2000,转化率1.5%,成交额3000 ,好还是不好,进步还是退步了,不知道。只有放到近1周,近1个月,甚至是近1年的数据中,组成线性的趋势去研究,才能找到“问题”,这个时候的数据才是有意义的。
所以,无论到哪一个阶段的店铺,都要养成一个每日积累数据的习惯,我们知道淘宝后台会有成熟的数据产品,会给你看一个趋势和历史数据,但这个远远不够,需要把所有数据都摘录到自己的数据库中,结合不同数据维度去综合分析问题,建立追踪机制,也就是下面讲的“结合思路”。中型以上的电商都会有一套自己的数据管理模式,对重点指标进行监控,以保证及时定位到问题作出相应决策。
单独追踪一个数据的会比较“片面”,得出结论甚至是错误的。因为所有电商的核心数据在一段时间内,具备偶然性和关联性的。
偶然性是指:可能某一天,转化率突然降低,比日常要低很多,这个是非常可能发生的。于是,所有人都惊慌失措,找到转化率相关的因素,看产品详情页的设计,产品的价格,找客服聊天记录,“优化了”整整1天详情页的设计,使产品价格更低了,售前客服被整顿了。最后发现一切照旧,还浪费了1天时间做了很多无用的工作。
关联性是指:大部分指标都是具有关联性,正相关或者负相关,转化率突然的降低,最后发现是在昨天流量突然暴涨,再看看流量来源,大部分来自于推广流量,不精准,但人多。
所以,追踪数据一定是多个维度一起看的,一般来说,转化率和流量是负相关的,流量暴涨,转化率就会下降;转化率上升,客单价就会下降。(大型促销活动除外)
但是,追踪了数据,多个维度结合了来分析数据,结论依然可能会不准确,原因在于,这2个思路都是在和“自己比”,我们还需要进行“与其他人对比”。这就是下面介绍的“对比思路”。
对比就是和其他人比。这个其他人一定要选择“合适的”。可以是与自己品牌定位相似的店铺数据,也可以是同行业中做的比较好的店铺数据。最具有可比性的还是跟自己“同层级”店铺。通过对比,才能发现自己差距到底在哪,找到优化的正确方向。
实际案例,之前做微波炉产品,销售量一直不如竞争品牌—格兰仕,然后去分析数据发现流量差很多。于是加大了展示类(钻石展位,CPM)和竞价类(直通车,CPC)广告的投入,却发现收效甚微,甚至牺牲了大部分利润。最后我们拿着同类型的一个产品,做了深度对比分析,发现流量来源中,自然搜索相差比较大,才发现是品牌认知的问题。于是推动品牌商着重于对产品品牌的打造。
节点思路就是将大的营销事件作为节点单独标记,数据剔除出来单独进行分析。在日常运营中,营销活动对数据影响还是非常大的,尤其是突然参加了淘宝官方的活动,比如聚划算等,会让某几天的流量,转化率,成交额飙升,这个时候我们再将这些数据插入到日常运营数据分析中,就会引起“失真”,影响对店铺日常运营优化方向的判断。
在信息流广告投放里面,有些人觉得数据不重要、有些人觉得数据很重要。我认为数据分析是一个必不可少的环节,在广告投放里面:曝光、点击率、点击量、出价、转化等都是关键指标;每一项数据都很重要。以上的这几种思路是数据分析基础,有了这样的分析思路,无论做哪一块内容,都将快速的找到核心问题,进而再找到解决问题的方法。这些分析思路适用于互联网运营,很多都可以套用。