传统线下渠道获取消费者信息的方式一般是通过向数据公司购买数据,或者委托调研公司经过周密漫长的用户调研得出一份报告。而电商模式下,我们可以用更小成本获取海量交易数据,进而分析消费者特征,定位目标消费人群。
魔方的大量数据都是源自成交,可以帮助商家理解消费行为。举一个实际的案例:我们来查看“面膜”类目的成交数据,包括标价分布和客单价分布之间的对比。一个月内,面膜的成交商品标价分布最多区间是5.5~7元,而成交人数的客单价(消费者累计购买金额)分布最多的区间是58~67元,就可算出平均一个用户会购买的面膜数量为10片。
继续查看消费者的购买频次分布:在该时段内购买的消费者数量占8成,我们可得出大致的结论:一般购买面膜的消费者通常在一个月内购买一次,并且一次购买的面膜片数大概是10片。因此搭配销售、组合销售时推出10片装优惠套装,或者关联其他不同类的面膜,最符合消费者购物特性。大多数消费者在网上一次购买的片数是10片,只要套装组合不偏离太多,消费者在潜意识里就更容易接受卖家的商品。 而实际的抽样采访结论是:一般的女性消费者一个月内的面膜使用量约为4~8片。
再来看买家来访时间:不同类目的来访和购买时间还是有明显差异的,针对面膜类目买家的来访时间,就可以做出对应的限时打折或者定向促销,甚至可据此安排上下架时间。
面膜类目买家的来访高峰时段是下午14:00~15:00,次高来访时段是上午10:00~11:00,成交高峰时段方面,第一成交高峰是上午10:00~11:00,第二位的时段是下午14:00~15:00,来访和成交的高峰时段并不是一一对应。
我们更换一个类目查看,比如住宅家具行业的餐桌子类,可以看到来访和成交的高峰时段都在深夜。揣测消费者的购买常理就可以得到答案,那就是一般大件物品购买都以家庭为单位,不是下单者一人做出决策。所以掌握不同类目消费者的购物习惯,调整推广时段,对提升整个网店的转化率有很好的效果。
消费者数据中其他的重要维度,包括性别、年龄、地域分布,决定了消费群体的人口统计属性。在数据魔方里我们不仅可以查看某行业的人口统计数据,还可以查看某个具体品牌、产品以及属性下商品的消费者数据。以iPhone 4S和Samsung Galaxy 3为例,三星的男性消费者比例比苹果高;苹果的主力购买人群是18~24岁,和三星的25岁以上相比更年轻;江浙沪和珠三角地区对苹果的钟爱度更高。
而偏爱三星的人群更多分布在北方和西南等地区的城市,地域的差异性也是非常大的。